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Abstract— In this paper, we analyze the convergence rate
of the Heavy-ball algorithm applied to optimize a class of
continuously differentiable functions. The analysis is performed
with the Heavy-ball tuned to achieve the best convergence rate
on the sub-class of quadratic functions. We review recent work
to characterize convergence rate upper bounds for optimization
algorithms using integral quadratic constraints (IQC). This
yields a linear matrix inequality (LMI) condition which is
typically solved numerically to obtain convergence rate bounds.
We construct an analytical solution for this LMI condition
using a specific “weighted off-by-one” IQC. We also construct
a specific objective function such that the Heavy-ball algorithm
enters a limit cycle. These results demonstrate that IQC
condition is tight for the analysis of the tuned Heavy-ball,
i.e. it yields the exact condition ratio that separates global
convergence from non-global convergence for the algorithm.

I. INTRODUCTION

This paper focuses on convergence rate analysis of first-
order algorithms for solving convex optimizations. The ob-
jective function is assumed to be continuously differentiable
and m-strongly convex with L-Lipschitz gradients. There
are many first-order algorithms in the literature including
gradient descent [1], [2], Nesterov’s method [3], Heavy-ball
method [4] and the recently developed triple momentum
method [5]. Convergence rate analysis determines asymptotic
convergence rate bounds for optimization algorithms. This
paper discusses convergence rate analysis for the Heavy-ball
algorithm tuned for quadratics.

Our approach is motivated by recent work in [6] on
analysis of optimization algorithms using integral quadratic
constraints (IQCs). IQCs were originally introduced by
Yakubovich [7] for control law analysis. Megretski and
Rantzer gave a unified framework to incorporate IQCs for
various types of nonlinearities and uncertaintities [8]. The
framework, reviewed in Section II, was adapted in [6] to
compute convergence rate upper bounds. The approach repre-
sents the optimization algorithm as a linear dynamical system
in feedback with the gradient of the objective function. The
conditions for convergence rate upper bounds are specified
as linear matrix inequalities (LMIs). Numerical solutions
of this LMI condition indicate that Heavy-ball tuned for
quadratic functions is not globally convergent for condition
ratios κ := L

m greater than ≈ 18. A specific function with
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κ = 25 is provided in [6] for which the tuned Heavy-ball
enters a limit cycle.

The main contribution of our work is to precisely char-
acterize the condition ratio κS that separates global conver-
gence from non-global convergence for the tuned Heavy-
ball algorithm. This precise characterization consists of two
aspects. First, we provide an analytical solution to the LMI
condition in [6] using the weighted off-by-1 IQC (See
Section III-A). This analytical solution is constructed using
a related Riccati equation form of the LMI condition. This
approach might be useful for other, related analyses. The
analytical LMI solution provides an upper bound on the
convergence rate of ρ = 1 for the condition ratio κS =
9+5
√

14. Second, we construct a specific objective function
with condition ratio kS that causes the tuned Heavy-ball to
limit cycle, i.e. it does not globally converge (See Section III-
B).

The analysis in our paper draws from related work in
the controls literature [9]. This related work uses Zames-
Falb IQCs to demonstrate global stability of a discrete-
time system in feedback with a static, nonlinearity. They
also construct counter-example nonlinearities that cause the
feedback system to limit cycle and hence prove instability.
The construction of the nonlinearity in Section III-B draws
inspiration from the prior work in [9].

II. BACKGROUND

A. Heavy-ball Algorithm

In this work, we consider the following convex optimiza-
tion involving f : R→ R,

min
x
f(x) (1)

This paper focuses on functions of a single variable. How-
ever, multivariable functions f : Rn → R can be handled
with minor modifications using the symmetry / dimension
reduction argument in [6]. The function f is assumed to be
continuously differentiable, m-strongly convex with gradi-
ents that are L-Lipschitz. We denote the set of such functions
as S(m,L) [2]. The condition ratio of any f ∈ S(m,L) is
defined as κ := L

m . The optimization in (1) has a unique
global minimum x∗ if f is strongly convex with m > 0.
Assume, without loss of generality by a coordinate shift, that
the minimum occurs at x∗ = 0. This assumption simplifies
the notation in the remainder of the paper.

There are many algorithms to solve such optimizations
including gradient descent [1], Heavy-ball [4], Nesterov’s
method [3], and the recently developed triple-momentum



method [5]. This paper focuses on the convergence properties
of the Heavy-ball algorithm. The iterates for this algorithm
are computed as:

xk+1 = xk − α∇f(xk) + β(xk − xk−1) , (2)

where α and β are parameters that are held constant as the
iterates are updated. The parameters are chosen to the values
that provide the optimal convergence rate for the class of
convex quadratic functions in S(m,L) [10], [6]. These tuned
values for parameters α and β are given in Section II-D.

Most first-order optimization algorithms can be equiva-
lently written in the form of a discrete-time, state-space
system in feedback with the gradient of f as noted in [6].
The Heavy-ball method can be written as:

ηk+1 = Aηk +Buk,

yk = Cηk,
(3)

uk = ∇f(yk), (4)

where ηk = [xk, xk−1]T is the state of the linear system and
the state matrices (A,B,C) are given as follows:

A :=

[
1 + β −β

1 0

]
, B :=

[
−α
0

]
, C :=

[
1
0

]T
. (5)

Let G denote the linear system in (3). This representation
for the first-order optimization is a feedback interconnection
of G and the gradient as shown in Figure 1. Figure 1 also
shows an additional system Ψ. This filter Ψ is used in the
analysis as described further in the next section.
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Fig. 1. Block diagram representation of a first-order algorithm given by
(3). The algorithm consists of the linear system G in feedback with the
gradient function ∇f . The auxiliary system Ψ, defined in Section II-B, is
appended for the analysis.

B. Integral Quadratic Constraints

Figure 1 is a feedback system involving an LTI system
and a nonlinear function. This section briefly reviews a
class of input/output constraints satisfied by the nonlin-
ear function. Specifically, the class of Integral Quadratic
Constraints (IQCs), introduced in [7], [8], can be used to
analyze feedback interconnections as shown in Figure 1.
These constraints have roots tracing back to the classical
absolute stability problem [11]. This section reviews the

variation of ρ-hard IQCs introduced in [6] for assessing
convergence rates of optimization algorithms.

Consider a static, memoryless function φ : R → R. This
function defines a mapping from a sequence {y0, y1, . . . , }
to {u0, u1, . . . , } by:

uk = φ(yk) (6)

The following discrete-time linear system Ψ can be used to
construct an auxiliary sequence, z, from the signals y and u:

ζk+1 = AΨζk +ByΨyk +BuΨuk,

zk = CΨζk +Dy
Ψyk +Du

Ψuk.
ζ0 = 0

(7)

The dimension of z is nz so that Ψ has dimension has
dimension nz × 2. The class of constraints on φ is given
by the auxiliary system Ψ and a matrix M ∈ Rnz×nz as
formally defined below.

Definition 1: Let ρ > 0 be given. The function φ : R→ R
satisfies the ρ-hard IQC defined by (Ψ,M) if the following
constraint holds for all N ≥ 0 and for all y ∈ `2e and
u = φ(y):

N∑
k=0

ρ−2kzTkMzk ≥ 0, (8)

We use the notation φ ∈ IQC(Ψ,M, ρ) if φ satisfies this
constraint.

IQCs can also be defined for more general operators.
However, the definition for static, memoryless functions will
be sufficient here. In particular, the paper uses the following
two ρ-hard IQCs derived in [6], [12].

Lemma 1 (Sector): Assume φ = ∇f where f ∈ S(m,L)
is given. Then φ satisfies the ρ-hard IQC defined by:

Ψ :=

[
L −1
−m 1

]
and M :=

[
0 1
1 0

]
(9)

This is known as the sector ρ-hard IQC and Ψ is static,
i.e. a matrix, for this constraint. This simply represents that
the function φ lies between the sector given by lines of slope
m and L. The next constraint involves a dynamic auxiliary
system Ψ.

Lemma 2 (Weighted Off-by-1): Assume φ = ∇f where
f ∈ S(m,L) is given. Then for any h1 ∈ [0, ρ2], φ satisfies
the ρ-hard IQC defined by

(AΨ, BΨ, CΨ, DΨ) =

(
0,
[
−L 1

]
,

[
h1

0

]
,

[
L −1
−m 1

])
and M :=

[
0 1
1 0

]
This is known as the weighted off-by-1 ρ-hard IQC. It is

actually a class of IQCs parameterized by the free variable
h1. The dynamics Ψ represent a finite impulse response
(FIR) filter with one time-step. This constraint captures the
slope conditions that must hold between data at one timestep
(uk, yk) and the previous timestep (uk−1, yk−1). If h1 = 0
then the dynamics of Ψ are unobservable and the constraint
reduces to the sector IQC, i.e. this form of the weighted



off-by-1 includes the sector constraint. This ρ-hard IQC is
part of the more general class of discrete-time Zames-Falb
multipliers [11]. Additional details can be found in [12].
This related work includes ρ-hard constraints where Ψ has a
higher order FIR filter. This captures slope conditions across
multiple time steps. There has also been recent work on the
use of anti-causal filters for ρ-hard IQCs [13].

C. LMI Condition for Convergence

IQCs can be used to estimate an upper bound on the
asymptotic convergence rate of first-order optimization algo-
rithms [6]. The analysis is based on the augmented feedback
system shown in Figure 1. Combine the dynamics of G (3)
and Ψ (7) to construct an LTI system with input u, output
z, and state x̂ :=

[
ηT , ζT

]T
. The state matrices for the

combined dynamics of G and Ψ are:

Â =

[
A 0

ByΨC AΨ

]
B̂ =

[
B
BuΨ

]
Ĉ =

[
Dy

ΨC CΨ

]
D̂ =

[
Du

Ψ

]
The convergence rate condition in the next theorem is stated
with these combined dynamics and an IQC satisfied by ∇f .

Theorem 1 ([6]): Assume ∇f > 0 satisfies the ρ-hard
IQC defined by (Ψ, M , ρ). Assume there exists P > 0 such
that the following LMI is feasible:[
ÂTPÂ ÂTPB̂

B̂TPÂ B̂TPB̂

]
−
[
ρ2P 0

0 0

]
+

[
ĈT

D̂T

]
M
[
Ĉ D̂

]
≤ 0,

(10)
Then the dynamics of the optimization algorithm (3) and (4)
initialized from any ηo satisfy

||ηk|| ≤
√
cond(P )ρk||ηo|| ∀k (11)

where cond(P ) is the condition ratio of P .
Proof: Define the Lyapunov-like function of the com-

bined system as V (x̂) := x̂TPx̂. Multiply the LMI condition
in (10) on the left and right by

[
x̂T , u

]
and its transpose.

This yields:

V (x̂k+1)− ρ2V (x̂k) + zTkMzk ≤ 0 (12)

This Lyapunov-type condition along with the ρ-hard IQC
can be used to show that V (x̂k) ≤ ρ2kV (x̂0). This is used
to bound the convergence rate of η. Details are given in [6].

Note that the analysis condition only depends on the
combined LTI dynamics and the ρ-hard IQC. In other words,
it does not explicitly depend on the nonlinearity ∇f . The
ρ-hard IQC constrains the signals (u, y) and hence implic-
itly constrains the input/output behavior of ∇f . Also note
that (10) is an LMI in P for fixed ρ > 0. In general, the
ρ-hard IQC itself depends on ρ. For example, the weighted
off-by-1 IQC has another decision variable h1 subject to the
constraint 0 ≤ h1 ≤ ρ2. The best (smallest) upperbound ρ
on the convergence rate is obtained via bisection with LMI
feasibility problems for each fixed ρ.

If ρ ≥ 1 then the upper bound on the Heavy-ball iterates
grows geometrically. In this case, the iterates need not

converge to the optimal value at x∗ = 0. We will still use
the term ”convergence rate” for such cases with ρ ≥ 1.

D. Heavy-ball Convergence Rate

This section summarizes the Heavy-ball analysis given in
[6] using the convergence rate condition in Theorem 1. First,
recall Nesterov’s theoretical convergence rate lower bound
[3]:

ρLB :=

√
κ− 1√
κ+ 1

(13)

This is a lower bound on the convergence rate achieved by
any first-order method on the class of functions in S(m,L).
The Heavy-ball parameters (α, β) can be tuned to achieve
this rate on the sub-class of quadratic functions in S(m,L).
These optimal parameters are given by:

α0 :=
4

(
√
L+
√
m)2

β0 :=

(√
κ− 1√
κ+ 1

)2

,
(14)

where κ is the condition ratio of function f used in (2).
Heavy-ball with (α0, β0), achieves Nesterov’s lower bound
(13) on the class of quadratic functions in S(m,L). However,
it is not globally convergent for all functions in S(m,L).
For example, Lessard, et al. [6] provide a (non-quadratic)
function f ∈ S(1, 25) for which Heavy-ball with (α0, β0)
produces a (non-decaying) limit cycle from appropriate ini-
tial conditions. This provides a specific lower bound on the
rate ρ: Heavy Ball with (α0, β0) has rate ρ ≥ 1 for the class
of functions S(1, 25).

Lessard, et. al also use the IQC framework to compute
upper bounds on the convergence rate for Heavy-ball with
(α0, β0). Figure 2 shows the upper bounds on the conver-
gence rate computed with both the sector IQC (Lemma 1)
and weighted off-by-1 IQC (Lemma 2). This figure also
shows Nesterov’s lower bound. All bounds are shown as a
function of the condition ratio κ = L

m . Note that the upper
bound curve for the weighted off-by-1 IQC crosses the bound
ρ = 1 at a condition ratio κ ≈ 18. This condition ratio
serves as a stability boundary for Heavy Ball with (α0, β0).
Specifically, the algorithm is globally convergent for κ below
≈ 18. The next section precisely characterizes this stability
boundary.

III. RESULTS

A. Analytical Bound on Convergence Rate

This section provides an analytical solution to the con-
vergence rate LMI (Theorem 1) using the weighted off-by-1
IQC. The weighted off-by-1 IQC in Lemma 2 has a single
state and the Heavy-ball algorithm has two states. Thus
the augmented linear system (Â, B̂, Ĉ, D̂) in Section II-
C has three states. The convergence rate LMI was solved
numerically with bisection to obtain the best (smallest) upper
bound on the rate ρ. These numerical solutions indicate
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Fig. 2. Rate bounds for various algorithms. Two curves represent IQC-
derived rate upper bounds for the quadratically optimized Heavy-ball
algorithm. The blue dashed curve represents Nesterov’s theoretical lower
bound for any algorithm given by (3) and any f ∈ S(m,L).

that the optimal convergence rate and storage matrix have
following dependencies for large condition ratios:

ρ(κ) :=

√
κ− 1√
κ+ 1

ρ∞ , (15)

P (κ) =


c11
α2

0

c12
√
β0

α2
0

c13
α0

(·) c22β0

α2
0

c23
√
β0

α0

(·) (·) c33

 , (16)

where ρ∞ and cij are constants (independent of the condition
ratio) to be determined. The dependence of (α0, β0) on κ
has not been denoted for simplicity. Entries of P that can
be inferred from symmetry are also omitted. The numerical
solutions also indicate that the optimal weighted off-by-
1 IQC is given with h1 = ρ for large condition ratios.
The dependences given in Equations (15) and (16) were
obtained by examining the numerical LMI solutions for large
condition ratios. For example, it was noted that the (3,3)
entry of P (κ) was constant (to within numerical errors). It
was also noted that the (1,3) entry of P (κ) was inversely
proportional to α0. There was some trial-and-error involved
to obtain these particular dependencies.

The next step is to determine analytical expressions for the
unknown constants. For this step, first define the following
matrices related to the weighted off-by-1 IQC:[

Q S
ST R

]
:=

[
ĈT

D̂T

]
M
[
Ĉ D̂

]
(17)

Next note that the LMI condition has the following related
Riccati equation form:

0 =ÂTPÂ− ρ2P +Q

− (ÂTPB̂ + S)(B̂TPB̂ +R)−1(ÂTPB̂ + S)T

Symbolic solvers can be used to obtain the expressions
for the remaining unknowns cij and ρ∞ from this Riccati

equation. This yields the following expressions:

ρ∞ :=

√
κS + 1
√
κS − 1

where κS := 9 + 5
√

14 (18)

c11 c12 c13

(·) c22 c23

(·) (·) c33

 =

3
√

5 1 + 2
√

5 1+3
√

5
2

(·) 4 + 3
√

5 7+
√

5
2

(·) (·) ρ∞

 (19)

This provides a complete analytical solution (P, h1, ρ) to the
convergence rate LMI with the weighted off-by-1 IQC for
large condition ratios. It can be verified that this is a solution
to the Riccati equation. Moreover, the analytical expressions
for (P, h1, ρ) satisfy the convergence rate LMI in Theorem 1
using the weighted off-by-1 IQC.

This solution is valid only for condition ratios greater than
or equal to κS ≈ 17.94. In addition, ρ(κS) = 1. Thus κS
is the condition ratio that defines the boundary for global
convergence for the Heavy-ball with (α0, β0).

B. Construction of Limit Cycle

This section constructs a function f with condition ratio
κS = 9+5

√
14 for which Heavy Ball (α0, β0) enters a non-

trivial limit cycle. Our construction is similar to that used
by Carrasco et al. in [9]. Specifically, we seek iterates for
the Heavy-ball algorithm (x1, x2, x3) such that Heavy-ball
sustains a limit cycle. Carrasco et al. [9] use a saturation
function as the non-linearity in their system. For the Heavy-
ball algorithm the non-linearity is ∇f . Gradient functions of
the following type have been used by other researchers [10],
[6] to find limit cycles:

∇f(x) =

{ Lx+ c1 x < a
mx+ a(L−m) + c1 a ≤ x ≤ b
Lx+ (a− b)(L−m) + c1 x ≥ b

,

(20)
where κ := L/m is the condition ratio and (a, b, c1) are
constants to be determined.

If the weighted off-by-1 IQC provides a tight rate upper
bound, we should be able to find a f with condition ratio
κS = 9 + 5

√
14 whose Heavy-ball iterates result in a limit-

cycle. We first simplify the gradient function ∇f in (20). By
appropriate scaling, we can assume m = 1 so that κ = L.
We further assume a = 1 so that the gradient is linear for
x < a. This choice implies that c1 = 0 because ∇f(0) = 0
by our standing assumption that the global minima occurs at
x∗ = 0. These choices yield the following partially defined
gradient function:

∇f(x) =

{ κx x < 1
x+ (L− 1) 1 ≤ x < b
Lx+ (1− b)(L− 1) x ≥ b

, (21)

This function has slope of L for x < 1 and x ≥ b but
(smaller) slope of m in the middle interval. We assume the
first two iterates “hop” across the middle interval: x1 := b
and x2 = 1. This leaves three unknowns for the condition
ratio κ, constant b > 1 and iterate x3. The limit cycle (if
it exists) must satisfy the Heavy-ball update relation (2).



This yields the following three simultaneous equations for
the candidate limit cycle:

x3 =x2 − α0Lx2 + β0(x2 − x1)

x1 =x3 − α0Lx3 + β0(x3 − x3)

x2 =x1 − α0[Lx1 + (1− b)(L− 1)] + β0(x1 − x3),
(22)

where (α0, β0) are given in (14). Symbolically solving these
equations yields the following:

L = κS = 4
√

5 + 9 ≈ 17.94

b = x1 = 3
√

5/10 + 3/2 ≈ 2.17

x3 = −7
√

5/10− 1/2 ≈ −2.07

Figure 3 illustrates the function f that gives a 3-limit
cycle for the Heavy-ball algorithm. Note that an even simpler
function with ∇f(x) = 1 (instead of L) ∀x ≥ 1 will have
the same limit cycle. Figure 4 gives the iteration history for
the Heavy-ball algorithm.
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Fig. 3. Graph of a function whose gradient is given by (21). The Heavy-
ball iterates cycle between 1, 2.17 and −2.07. The slope of the gradient is
κS in the intervals (-inf , 1) and [b, inf), and m = 1) in the interval [1, b),
where b := 2.17. The red dashed lines separate these intervals.
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Fig. 4. Heavy-ball iterates for f(x) forming a 3-limit cycle.

IV. CONCLUSIONS

In this work, we analyzed the Heavy-ball algorithm with
parameters tuned for the sub-class of quadratic functions.
The analysis is performed using LMI conditions and ρ-hard
IQCs as introduced by Lessard, et al. Numerical studies
of these LMI conditions indicate that the tuned Heavy-ball
algorithm is globally convergent for functions with “small”
condition ratios. An analytical solution to the LMI condition
using a weighted off-by-1 IQC yields the condition ratio
κS := 9+5

√
14 as the boundary between global convergence

and non-convergence. We have also constructed a specific
function with condition ratio equal to κS for which the
tuned Heavy-ball enters into a limit cycle. This indicates
that the IQC condition provides a tight characterization of
the stability boundary for the tuned Heavy-ball. For future
work, it would be interesting to study if there exists a general
form for functions ∈ S(m,L) with condition ratios larger
than κS for which the weighted-off-by-1 provides a tight
convergence rate upperbound.
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