
Synthesizing Reactive Test Environments for Autonomous Systems:
Testing Reach-Avoid Specifications with Multi-Commodity Flows

Apurva Badithela*1, Josefine B. Graebener*2, Wyatt Ubellacker1, Eric V. Mazumdar1,
Aaron D. Ames1, Richard M. Murray1

Abstract— We study automated test generation for testing
discrete decision-making modules in autonomous systems. Lin-
ear temporal logic is used to encode the system specification
— requirements of the system under test — and the test
specification, which is unknown to the system and describes the
desired test behavior. The reactive test synthesis problem is to
find constraints on system actions such that in a test execution,
both the system and test specifications are satisfied. To do
this, we use the specifications and their corresponding Büchi
automata to construct the specification product automaton.
Then, a virtual product graph representing all possible test
executions of the system is constructed from the transition
system and the specification product automaton. The main
result of this paper is framing the test synthesis problem as a
multi-commodity network flow optimization. This optimization
is used to derive reactive constraints on system actions, which
constitute the test environment. The resulting test environment
ensures that the system meets the test specification while also
satisfying the system specification. We illustrate this framework
in simulation using grid world examples and demonstrate it
on hardware with the Unitree A1 quadruped, where we test
dynamic locomotion behaviors reactively.

I. INTRODUCTION

Operational testing of autonomous systems at various lev-
els of abstraction — from low-level continuous dynamics to
high-level discrete decision-making — is essential for verifi-
cation and validation. In formal methods, testing often refers
to falsification, where inputs to the system are found such
that the resulting trace violates system requirements [1]–[7].
Falsification methods typically minimize a robustness metric
associated with the formal specifications of the system to
find inputs that result in falsifying traces [8]–[10]. However,
another approach to testing is to have test engineers hand-
design test scenarios as seen in the qualification tests of the
DARPA Urban Challenge [11], [12]. In this work, we bridge
these two approaches by leveraging test engineer expertise
at the specification level for testing discrete, long-horizon
decision-making in robotic systems, and then automatically
constructing the corresponding test environment. The test
engineer characterizes the desired test behavior in the test
specification, and the test environment is constructed such
that both the system and test specifications can be satisfied

* The authors contributed equally. Corresponding authors: A. Badithela,
J.B. Graebener {apurva,jgraeben}@caltech.edu

We acknowledge funding from AFOSR Test and Evaluation Pro-
gram, grant FA9550-19-1-0302, National Science Foundation award CNS-
1932091, and Dow (#227027AT).

1Department of Computing and Mathematical Sciences, California Insti-
tute of Technology, Pasadena, CA 91125, USA

2Graduate Aerospace Laboratories, California Institute of Technology,
Pasadena, CA 91125, USA

Fig. 1: Overview of the test environment synthesis frame-
work and the hardware demonstration.

by a correctly designed system. In the last decade, the control
synthesis community has demonstrated the effectiveness of
using temporal logic to specify formal requirements for
robotic systems [13]–[16]. Furthermore, we assume that via
the use of rulebooks and industry standard manuals [17]–
[19], a test engineer can provide these high-level descriptions
on the desired test outcomes using temporal logic. Our notion
of testing in this work is complementary to falsification
— we seek to construct a test environment to observe
a desired test behavior, after which falsification could be
applied to determine the worst-case scenario. Our approach
to test generation shares similarities with existing methods,
but has key differences. Similar to [20], we characterize the
mission requirements on the system as a system specification,
and characterize the desired behavior to be observed during
the test via a test specification, which is unknown to the
system. However, unlike [20], we seek to construct a test
environment, by constraining actions of the system, such
that: a) a correctly designed system can still satisfy its
requirements, and b) the test specification is satisfied if the
system specification is satisfied (Problem 1). Additionally,
we seek to synthesize tests in which the system is not too
restricted in its decision-making (Problem 2).

For synthesizing a test environment that is consistent with
the test specification, we borrow from automata-theoretic

constructions commonly used in reactive synthesis [21].
However, the problem does not reduce to synthesizing a test
environment to a conjunction of the system specification and
test specification. In reactive synthesis, either fully cooper-
ative or fully adversarial approaches are considered [21]–
[23], neither of which accurately capture the problem in our
setting. Here, the tester can assume cooperation from the
system with regards to the system specification, but since
the system is unaware of the test specification, the system is
adversarial with respect to the test specification in the worst-
case. As a result, standard reactive synthesis tools cannot
easily be ported over. Building upon the results of [24],
the key contributions of this paper are (i) framing reactive
test environment synthesis for reach-avoid specifications as a
multi-commodity network flow problem, (ii) formulating the
problem as a min-max optimization, whose solution results
in a constrained test, and (iii) hardware demonstrations of
the resulting test environment to reactively test dynamic
locomotion behaviors of the Unitree A1 quadruped. A key
advantage of our method is that the synthesized test is
reactive — the constraints visible to the system under test
are reactive to the system state and depend on the system’s
strategy, which is not known to the tester a priori.

II. BACKGROUND

In this section, we provide a short background on temporal
logic, automata, and network flows.

A. Temporal Logic, Transition Systems, and Automata

Linear temporal logic (LTL) can be used as a specification
language to describe linear time properties [25]. The syntax
of LTL is comprised of both logical (∧ and, ∨ or, and ¬
negation) and temporal operators (⃝ next, □ always, ♢ even-
tually, and U until) operators. LTL can specify requirements
on high-level decision-making in autonomous systems such
as safety □(φs

sys), progress ♢(φp
sys), and fairness □♢(φf

sys).
A nondeterministic Büchi automaton (NBA) [26] is a

tuple B = (Q,Σ, δ, Q0, F), where Q represents the states,
Σ = 2AP is the alphabet over the finite set of atomic
propositions AP , δ : Q×Σ→ 2Q is the transition function,
Q0 ⊆ Q represents initial conditions, and F ⊆ Q is
the set of acceptance states. A transition system is a tuple
T = (S,A,E, I, AP,L) where S is the set of states, A is
the set of actions, E : S ×A→ S is the transition relation,
I ⊆ S is the set of initial states, AP is the set of atomic
propositions, and L : S → 2AP is a labeling function that
indicates the set of atomic propositions that evaluate to true
at a particular state. A trace of the system T is an infinite
sequence of states σ = s0s1 . . . where si ∈ T .S. Given an
LTL formula φ, we say σ |= φ if s0 |= φ.

Definition 1 (Product Automaton). A product automaton
P = T ⊗B = (S,A,E, I, AP,L) is the synchronous product
of transition system T and NBA B, where:

• P.S = T .S × B.Q, and P.A = T .A
• ∀s, t ∈ T .S, ∀q, p ∈ B.Q and a ∈ T .A, if T .E(s, a) =
t and B.δ(q, T .L(t)) = p, then P.E((s, q), a) = (t, p),

• P.I = {(s0, q0)|s0 ∈ T .I, q0 ∈ B.Q0}
• P.AP = B.Q, and
• P.L : P.S → 2P.AP such that P.L((s, q)) = {q}.

Definition 2 (Asynchronous Product Automaton). An asyn-
chronous product of Büchi automata B1, . . . ,Bn is the Büchi
automaton Bπ = B1 × . . .× Bn = (Q,Σ, δ, Q0, F), where:

• Bπ.Q := B1.Q× . . .× Bn.Q, the Cartesian product of
the states of the individual automata,

• Bπ.Σ :=
⋃n

i=1 Bi.Σ,
• Bπ.δ((u1, . . . , un), l) = (v1, . . . , vn) if ∃i ∈ {1, . . . , n}

such that Bi.δ(ui, l) = vi, and ∀j ̸= i, uj = vj ,
• Bπ.Q0 = {(q1, . . . , qn)| ∀i, 1 ≤ i ≤ n, qi ∈ Bi.Q0},
• Bπ.F = {(s1, . . . , sn)| ∃i, 1 ≤ i ≤ n, s.t. si ∈ Bi.F}.

B. System and Test Environment

The system specification and the test specification rep-
resent requirements on the system under test and the test
environment, respectively [20]. The system is assumed to be
designed according to its specification, and has no knowledge
of the test specification. We consider the system and test
specifications belonging to the reach-avoid fragment of LTL
which captures safety and progress requirements as follows:

φsys = □φs
sys ∧ ♢φp

sys, φtest =
∧
i

♢(φp
test)i. (1)

We show that it is possible to model the set of test
executions using network flows on an automaton.

Definition 3 (Flow Network). A flow network is a tuple
N = ⟨V,E, c, s, t⟩ where V is a set of vertices, E is a set
of directed edges, E ⊆ V × V , c is a capacity function for
the amount of flow that each edge can transfer, and s ∈
V are the source vertices and t ∈ V are the target sink
vertices. The flow f ∈ R|E| maps each edge e ∈ E to a non-
negative real number, satisfying capacity and conservation
constraints. The flow across an edge e is denoted as fe. The
total flow across the network is the net flow out of the source,
F =

∑
v:(s,v)∈E f (s,v). A multi-commodity flow network

has multiple source-sink pairs and their corresponding flows
compete for edge capacity [27].

III. SYNTHESIZING REACTIVE TEST ENVIRONMENTS

This section sets up the test synthesis problem statement
and introduces a running example to illustrate our approach.

A. Problem Statement

The system and test specifications are written at the same
level of abstraction as the model of the system characterized
by the transition system T . We require that the sub-formulas
of the test specification, φs

test and φp
test in equation (1), be

high-level descriptions of desired test scenarios provided by
a test engineer. In this way, the task of describing the desired
test behavior is left to the test engineer, but synthesizing a
corresponding test environment can be automated.

Problem 1. Given a discrete abstraction of a system model
T , and system and test specifications, φsys and φtest, defined
over the set AP , find the set of transitions of the system

init

goal

TT

(a) System Büchi automaton Bsys.

init

(b) Tester Büchi automaton Btest.

init

(c) Specification product automaton Bπ .

(d) Resulting Test Execution.

(e) Virtual game graph G = T ⊗Bπ . The
initial state corresponds to S, (partially)
yellow states to T, and exclusively blue
states to I.

Fig. 2: Büchi automata for the system specification, the test specification and the product automaton Bπ = Btest ×Bsys, and
the virtual product graph G for the corridor navigation example. The accepting states of the system are shaded in yellow and
the acceptance states of the tester are shaded in blue, with nodes shaded in both yellow and blue representing acceptance
states of both tester and system. Transition labels and self-loops have been omitted in Btest, Bπ , and G for clarity.

Ecuts
T ⊂ T .E that need to be constrained such that all traces

σ of the constrained system satisfy the property:

∃σ s.t. σ |= φsys ∧ (σ |= φsys =⇒ σ |= φtest). (2)

In other words, a trace of the constrained system that
satisfies the system specification must also satisfy the test
specification, and the constraints are synthesized such that
there always exists a trace satisfying the system specification.
In addition to determining constraints that result in test
executions of the system abiding by equation (2), we do not
want the system to be so constrained that it does not have
freedom in decision-making during the test. In this work,
we use maximum network flow as a proxy for the maximum
freedom a system has to achieve its specifications, and we
present an algorithmic framework that addresses both these
problems on examples in both simulation and hardware.

B. Running Example: Robot in a corridor

Consider a corridor in a grid world shown in Figure 2d.
The system under test is starting in the middle of the corridor
with the goal of reaching either end. The dynamics are
simple grid world dynamics enabling horizontal transitions to
neighboring grid cells. The desired test behavior is to observe
the system visit the two blue cells, φtest = ♢key1 ∧ ♢key2.
The system specification is given as φsys = ♢goal, which
corresponds to the yellow grid cells. We then constrain the
system transitions according to our algorithm by placing
obstacles on the grid cells.

C. Constructing Product Automata

We use automata theory to define the specification product
automaton and virtual product graph. The system product
graph Gsys = T ⊗ Bsys is the product automaton of the
transition system T and the Büchi automaton of the speci-
fication φsys. The asynchronous product is used to construct
the specification product automaton of the system and test
Büchi automata.

Definition 4 (Specification Product Automaton). The spec-
ification product automaton Bπ = Bsys × Btest is the asyn-

chronous product of the Büchi automata of the system and
the test specification. In particular, Bπ.F = {(qsys, qtest) ∈
Bπ.Q|qsys ∈ Bsys.F} ∪ {(qsys, qtest) ∈ Bπ.Q|qtest ∈ Btest.F}.

Definition 5 (Virtual Product Graph). The synchronous
product of transition system T and the NBA Bπ is the virtual
product graph G = T ⊗ Bπ .

Constraints will be synthesized on G and then mapped to the
transition system T . A test execution is a trace σ defined over
T , which can be mapped to G and Gsys. For simplicity, we
denote σ as the trace on all of these transition systems, and
infer the transition system from context.

Definition 6 (Source, Intermediate and Target Nodes). The
source (S), intermediate (I) and target (T) are the set of nodes
on the virtual product graph G with the following properties:

S = {(s0, q0) ∈ G.S|q0 ∈ Bπ.Q0}
I = {(s, (qsys, qtest)) ∈ G.S|qtest ∈ Btest.F, qsys /∈ Bsys.F}
T = {(s, (qsys, qtest)) ∈ G.S|qsys ∈ Bsys.F}

The source nodes S represent the initial conditions of the
test, the intermediate nodes I represent the acceptance states
corresponding to the test specification, and the target nodes T
represent the acceptance states corresponding to the system
specification. We denote the flow fS→I for the flow network
(G.S,G.E,1, S, I). The flows fI→T and fS→T are similarly
denoted. The flow fS→T is defined to have zero flow on edges
into and out of the intermediate I, and is referred to as bypass
flow. For the running example, the automata Bsys, Btest, Bπ ,
and the virtual product graph G with the corresponding S, I,
and T nodes are illustrated in Figure 2.

Problem 2. Given the setting in Problem 1, synthesize the
set of edge constraints Ecuts

G on the virtual product graph G
such that flow from S to T (visiting nodes in I) is maximized,
and bypass flow fS→T is cut.

D. Multi-Commodity Flows and Bilevel Optimization
To synthesize constraints Ecuts

G on G, we define multi-
commodity flows on G and solve a bilevel optimization.

The constraints Ecuts
G are such that a) ∃σ s.t. σ |= φsys,

and for every such σ, the test specification is also satisfied
(equation (2)), and b) the flow from S to T (through I) is
maximized. These constraints are then mapped to system
constraints Ecuts

T . A brute force approach to solving Prob-
lems 1 and 2 is not viable as it involves finding sets of paths
PS→I and PI→T realizing max-flow from S to I, and I to
T, respectively, such that PS→I and PI→T are disjoint except
at intermediate I. Finding such a feasible pair of PS→I and
PI→T would take exponential time because enumerating all
paths is exponential in the size of the graph [27].

To address this combinatorial problem, we formulate a
bilevel optimization that relaxes edge cuts Ecuts

G to take
fractional values. The choice of objective function and the
relaxation make the optimization tractable. While the cut
values of some edges take on fractional values due to the
relaxation, we find empirically that these fractional cuts
are not relevant to constraining the flow. The system and
tester are players that optimize for different flows on the
same virtual product graph G. The system player maximizes
bypass flow FS→T, which represents system traces satisfying
φsys without satisfying φtest. The tester maximizes flows
FS→I and FI→T, and indirectly constrains bypass flow by
placing cuts on system transitions. Unlike the canonical
multi-commodity flow framework [28], our flows do not
compete for edge capacities, but are equally constrained by
edge cuts. The total flow through I is defined as follows,

Ftotal = min{FS→I, FI→T}. (3)

Network flow constraints are written in normalized form by
the auxiliary variable t := 1/Ftotal. For brevity, we use the
same notation to denote the normalized flows. The variable
d ∈ R|G.E|

≥0 denotes edge cuts on G, and de is the constraint
on edge e ∈ G.E — de = t implies that e is cut or fully
constrained and de = 0 is unconstrained. As the outer (min)
player, the tester variables are the flows fS→I and fI→T, edge
cuts d, and the auxiliary variable t. The objective function
is such that the tester maximizes the total flow Ftotal and
minimizes the total bypass flow FS→T. Likewise, the system
player maximizes bypass flow FS→T. Next, the constraints
of the bilevel optimization are detailed. Capacity constraints
for normalized variables in this optimization are,

∀e ∈ G.E, 0 ≤ de ≤ t, 0 ≤ fe
S→I ≤ t,

0 ≤ fe
S→T ≤ t, 0 ≤ fe

I→T ≤ t.
(c1)

Cut constraints correspond to the cut variable and flow
variable of an edge competing for its capacity. For all k ∈
{S→ I, I→ T, S→ T}, the cut constraints are as follows,

∀e ∈ G.E, de + fe
k ≤ t. (c2)

Flow conservation ensures that the flow entering a node is
equal to the flow leaving the node (unless the node is a
source or a target). For k ∈ {S → I, I → T, S → T}, the
conservation constraints are as follows,

∀v ∈ G.S
∑

u:(u,v)∈G.E

f
(u,v)
k =

∑
u:(v,u)∈G.E

f
(v,u)
k . (c3)

Since the tester is maximizing Ftotal in the objective, equa-
tion (3) is captured as the following (normalized) constraint,

1 ≤
∑

v:(S,v)∈G.E

f
(S,v)
S→I , 1 ≤

∑
v:(I,v)∈G.E

f
(I,v)
I→T . (c4)

Our framework synthesizes test environments by con-
straining, not forcing, system actions. Under the synthesized
constraints, a system trace σ on G satisfying the system
specification is guaranteed to exist. However, the synthesized
constraints on system actions could result in the system
specification becoming unsatisfiable on the system product
automaton Gsys, that is the system cannot re-plan to satisfy
its requirements. If possible, our framework should return
constraints for which at every temporal instance of the test
execution, the system should find a feasible path to satisfying
its requirements. We add the following constraints such that
at every system state during the test execution there exists a
path to the acceptance states of φsys on Gsys.

The tester places constraints reactive to the system state,
and it is not necessary that all constraints on the virtual
product graph G are active at every temporal instance. To
reason about constraints that would be visible to the system at
s ∈ G.S, we define mappings between the product automata.

Each state in the specification product automaton Bπ
represents a temporal event during the test execution. For
each q ∈ Bπ.Q the corresponding edges that are active at
the same time are:

CG(q) = {((s, q), (s1, q1)) ∈ G.E}. (4)

The constraints on this set of active edges is the maximum
number of constraints that can be simultaneously present. For
every q ∈ Bπ.Q and edge cuts de for active edges e ∈ CG(q),
we need to ensure that there remains a path in Gsys to the
system acceptance states. This requires mapping the edge cut
values of edges in CG(q) to edges in Gsys. To enable this, we
first map nodes from G to Gsys. A node g = (s, (qsys, qtest))
in G is mapped to Gsys via the following projection,

PG→Gsys(g) = (s, qsys). (5)

For each q ∈ Bπ.Q, the cut values of active edges in
CG(q) are mapped to corresponding edges on Gsys. For every
(u, v) ∈ CG(q), the corresponding edge on Gsys shares the
same cut value,

deGsys
(q) = d(u,v), (6)

where e = (PG→Gsys(u), PG→Gsys(v)) ∈ Gsys.E.
For every q ∈ Bπ.Q, let fSsys→Tsys(q) denote the maximum

flow from source Ssys := PG→Gsys(S) to target Tsys :=
PG→Gsys(T) on system product graph Gsys with cut values
set by deGsys

(q). For brevity, we do not elaborate the con-
straints here, but the flow respects the standard network
flow constraints analogous to equations (c1)-(c3). Since the
constraints are synthesized agnostic to the system controller,
to ensure that the active cuts do not prohibit satisfaction of
the system specification, we require the following condition
to be satisfied:

∀q ∈ Bπ.Q,
∑

e=(Ssys,v)∈Gsys.E

fe
Ssys→Tsys

(q) ≥ t. (c5)

Since the above constraint is defined from a fixed source
Ssys to target Tsys on Gsys, we assume that from every state
(s, qsys) ∈ Gsys.S, there exists a path back to the source Ssys.
This ensures that there are no trap states as the system can
return to the source, and from there a path to the target
is guaranteed to exist. For the examples of this paper, this
assumption is satisfied. In future work, we would like to
prove these properties for a larger class of specifications
and transition systems. Therefore, the bilevel optimization
for synthesizing reactive constraints is as follows,

MCF-OPT(λ) :

argmin
fS→IfI→T,d,t,

fSsys→Tsys (q), ∀q∈Bπ.Q

argmax
fS→T

t+ λ
∑

v:e=(S,v)∈G.E

fe
S→T

s.t. (c1)− (c5),

(7)

where the regularization parameter λ penalizes the tester (and
rewards the system) on the total bypass flow FS→T flow.
This optimization is in the form of a min-max Stackelberg
game with dependent constraint sets studied in [29]. The
optimization (7) returns fractional cut values de for edges on
the virtual product graph G. Edges with cut values close to t
are fully constrained and denoted as Ecuts

G . Lower fractional
values for de still allow flow to pass through and are not
considered cut.

Algorithm 1: Constraining Virtual Product Graph G
1: procedure AUTOMATA(T , φsys, φtest)
2: Bsys ← BA(φsys) ▷ System Büchi automaton
3: Btest ← BA(φtest) ▷ Tester Büchi automaton
4: Bπ ← Bsys × Btest ▷ Specification product
5: Gsys ← T ⊗ Bsys ▷ System product
6: G ← T ⊗ Bπ ▷ Virtual Product Graph
7: return G,Gsys,Bπ,Bsys,Btest

8:
9: procedure CONSTRAINTS(T ,G,Gsys,Bπ,Bsys,Btest)

10: Identify nodes S, I, T on G
11: Choose regularization λ
12: f∗S→I, f

∗
I→T, f

∗
S→T,d

∗, t∗ ← MCF-OPT(λ)
13: Ecuts

G = ∅ ▷ To store cuts of G
14: for e ∈ G.E do
15: if d∗e = 1 then ▷ Ignore fractional cuts
16: Ecuts

G ← Ecuts
G ∪ e

17: G.E ← G.E \ Ecuts
G

18: Verify G has no FS→T flow.
19: return Ecuts

G

E. Projecting the constraints onto the physical space
To constrain the system’s actions during the test execution,

the cut edges Ecuts
G are mapped onto the the physical system

transitions T . We define the projection,

PG→T (g) = s ∈ T .S | g = (s, (qsys, qtest)) ∈ G.S, (8)

which maps each state g in the virtual product graph G to
its corresponding state in the transition system T . This is a

mapping where multiple states in G will map to a single state
in T . Additionally, to map a state g = (s, (qsys, qtest)) ∈ G.S
to its corresponding state in Bπ we define the projection,

PG→Bπ
(g) = (qsys, qtest) ∈ Bπ.Q. (9)

We use the projection defined in equation (9) to determine
the state of the test execution q ∈ Bπ.S. When the system
enters a state g ∈ G.S with an active cut, the corresponding
transition from state PG→T (g) in T will be constrained. The
test environment will accumulate constraints on T until the
test transitions to a g′ ∈ G.S mapping to q′ ∈ Bπ.Q, such
that q ̸= q′. The obstacles that were placed previously will be
removed and new obstacles will be placed according to the
set of active cuts on G corresponding to q′. This procedure
is outlined in Algorithm 2.

This makes our framework reactive to the system state
during the test execution, where finding static constraints on
G results in a reactive test strategy that constrains the system
actions according to the observed behavior during the test.
Thus, test executions are not open-loop and constraints to
system actions are made visible according to the system state.

Algorithm 2: Reactive Test Synthesis

1: procedure REACTIVE TEST(T , φsys, φtest)
2: G,Gsys,Bπ,Bsys,Btest ← AUTOMATA(T , φsys, φtest)
3: Ecuts

G ← CONSTRAINTS(T ,G,Gsys,Bπ,Bsys,Btest)
4: g = (s, (qsys, qtest)) ← G.I , and q = (qsys, qtest)
5: qprev ← PG→Bπ (g) ▷ Initialize previous q.
6: Ecuts

T ← ∅ ▷ Initialize empty set of active cuts.
7: E ← T .E ▷ Original transitions from T .
8: while not qsys ∈ Bsys.F do
9: if q ̸= qprev then

10: Ecuts
T ← ∅ ▷ Reset all active cuts.

11: if outgoing edgeG(g) ∈ Ecuts
G then ▷ Add cut.

12: Ecuts
T ← Ecuts

T ∪ outgoing edgeT (PG→T (g))

13: T .E ← E \Ecuts
T ▷ Update available transitions.

14: s← system stepT (s) ▷ System next step.
15: g ← advance testG(g, s) ▷ Update state in G.
16: qprev ← q
17: q ← PG→Bπ

(g) ▷ Update state in Bπ .

IV. EXPERIMENTAL RESULTS

We implemented and validated this framework on simu-
lated grid world examples and hardware experiments. For the
examples in this paper, we use a regularization parameter of
λ = 1 and initialize the optimization with flows satisfying
the conservation and capacity constraints and no cuts on the
virtual product graph. Results on additional grid world and
road network examples can be found at this repository1.

1https://github.com/abadithela/Flow-Constraints

https://github.com/abadithela/Flow-Constraints

(a) Motion primitive graph.

(b) Snapshots of the hardware test execution on the Unitree A1 quadruped.

Fig. 3: Resulting test execution on the Unitree A1 quadruped generated by this framework.

1) Robot in a Corridor: The agent under test in the
running example is controlled by a grid world controller
synthesized using TuLiP (Temporal Logic and Planning
Toolbox) [30]. The algorithms presented in section III-D
result in a test execution during which the agent visits the two
pre-determined key locations before reaching one of the goal
states at the end of the corridor. The resulting test execution
is shown in Figure 2d.

2) Hardware Experiments with Quadruped: Next we will
find a test strategy to test an actual robotic system, the
Unitree A1 quadruped. The quadruped is controlled using
a motion primitive layer with behaviors for lying down,
standing, walking, and jumping. The underlying dynamics of
the transitions between primitives are abstracted away from
the higher-level autonomy as described in [31], and can be
commanded directly. The autonomy layer is provided by a
TuLiP controller generated on an abstraction of the transition
system of the quadruped, consisting of grid world locations
and states corresponding to the available motion primitives.
We find test strategies and execute the resulting test for two
test specifications inspired by search and rescue missions.

a) Beaver Rescue: The quadruped’s task is to rescue
the beaver from the hallway and return it to the lab. The
system specification is given as φsys = ♢goal, where goal
corresponds to the quadruped and the beaver reaching the
safe location in the lab. The test specification is given as
φtest = ♢door1 ∧ ♢door2, ensuring that the quadruped will
use different doors on the way to the beaver and back into the
lab. The resulting test execution first shows the quadruped
using door2 to exit the lab into the hallway, then after it
reaches the beaver, door2 is shut and the quadruped walks to
door1 to finally return to the lab. The reactive aspect here can
be observed as follows — if the quadruped chose to enter
the hallway through door1, then the resulting test execution
would constrain access to door1 when the quadruped is
attempting to re-enter the lab with the beaver. Snapshots of
this test execution can be seen in Figure 1.

b) Motion Primitive Testing: In this example, we test
the motion primitives of the quadruped shown in Figure 3a.
The goal for the quadruped is reaching the beaver in the
hallway. The test specification is given as φtest = ♢jump ∧

♢lie ∧ ♢stand, which ensures that each motion primitive is
tested at least once. The test setup includes lights at different
heights, which correspond to the motion primitive which
might unlock the door. The light starts in blue and after
the motion primitive has been executed, the light will turn
red (if the door remains locked) or green (if the door is
unlocked). Our framework will decide whether the doors will
be locked or unlocked according to which motion primitives
have already been observed during the test. This is where
the reactivity of this framework becomes apparent, if the
quadruped chose a different set of doors and motion primi-
tives, the resulting test execution would have been different.
Snapshots of the test execution are shown in Figure 3b.

V. CONCLUSIONS AND FUTURE WORK

We introduced a bilevel optimization framework to find
reactive test environments that constrain the system under
test to satisfy the test specification while also ensuring that
a correctly designed system can satisfy its specification.
We defined projection functions to map the optimization
result into constraints on system actions. We implemented
this approach to test high-level decision-making in hardware
and executed the resulting reactive test strategy. For future
work, we would like to prove that our algorithm is sound
and complete, and provide sub-optimality guarantees on the
generated test environment. The approach outlined in this
paper requires reactive placement of obstacles during a test,
which can be challenging for real-world use cases. Therefore,
we aim to extend this framework to include dynamic test
agents to constrain the system actions, and find cost-effective
test environments, for example by minimizing the number of
test agents.

ACKNOWLEDGMENTS

The authors would like to acknowledge Mani Chandy,
Tichakorn Wongpiromsarn, Qiming Zhao, Michel Ingham,
Joel Burdick, Leonard Schulman, Shih-Hao Tseng, Ioannis
Filippidis, and Ugo Rosolia for insightful discussions.

REFERENCES

[1] S. Sankaranarayanan and G. Fainekos, “Falsification of temporal
properties of hybrid systems using the cross-entropy method,” in
Proceedings of the 15th ACM international conference on Hybrid
Systems: Computation and Control, 2012, pp. 125–134.

[2] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-
based approaches for verification of embedded control systems: An
overview of traditional and advanced modeling, testing, and verifica-
tion techniques,” IEEE Control Systems Magazine, vol. 36, no. 6, pp.
45–64, 2016.

[3] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
taliro: A tool for temporal logic falsification for hybrid systems,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2011, pp. 254–257.

[4] G. Chou, Y. E. Sahin, L. Yang, K. J. Rutledge, P. Nilsson, and N. Ozay,
“Using control synthesis to generate corner cases: A case study on
autonomous driving,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 37, no. 11, pp. 2906–2917,
2018.

[5] T. Dang and T. Nahhal, “Coverage-guided test generation for continu-
ous and hybrid systems,” Formal Methods in System Design, vol. 34,
no. 2, pp. 183–213, 2009.

[6] M. Hekmatnejad, B. Hoxha, and G. Fainekos, “Search-based test-case
generation by monitoring responsibility safety rules,” arXiv preprint
arXiv:2005.00326, 2020.

[7] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Falsification of ltl safety
properties in hybrid systems,” International Journal on Software Tools
for Technology Transfer, vol. 15, no. 4, pp. 305–320, 2013.

[8] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems,” in International Conference on Computer Aided
Verification. Springer, 2010, pp. 167–170.

[9] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals,” Theoretical Computer Science,
vol. 410, no. 42, pp. 4262–4291, 2009.

[10] T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H. Ravanbakhsh,
M. Vazquez-Chanlatte, and S. A. Seshia, “Verifai: A toolkit for the
formal design and analysis of artificial intelligence-based systems,” in
International Conference on Computer Aided Verification. Springer,
2019, pp. 432–442.

[11] “Technical Evaluation Criteria,” https://archive.darpa.mil/
grandchallenge/rules.html.

[12] “DARPA Urban Challenge,” https://www.darpa.mil/about-us/timeline/
darpa-urban-challenge.

[13] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE transactions on
robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[14] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
vol. 57, no. 11, pp. 2817–2830, 2012.

[15] M. Kloetzer and C. Belta, “Temporal logic planning and control of
robotic swarms by hierarchical abstractions,” IEEE Transactions on
Robotics, vol. 23, no. 2, pp. 320–330, 2007.

[16] M. Lahijanian, S. Almagor, D. Fried, L. E. Kavraki, and M. Y. Vardi,
“This time the robot settles for a cost: A quantitative approach to
temporal logic planning with partial satisfaction,” in Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

[17] A. Censi, K. Slutsky, T. Wongpiromsarn, D. Yershov, S. Pendleton,
J. Fu, and E. Frazzoli, “Liability, ethics, and culture-aware behavior
specification using rulebooks,” in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019, pp. 8536–8542.

[18] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a for-
mal model of safe and scalable self-driving cars,” arXiv preprint
arXiv:1708.06374, 2017.

[19] T. Wongpiromsarn, K. Slutsky, E. Frazzoli, and U. Topcu, “Minimum-
violation planning for autonomous systems: Theoretical and practical
considerations,” in 2021 American Control Conference (ACC). IEEE,
2021, pp. 4866–4872.

[20] J. B. Graebener, A. Badithela, and R. M. Murray, “Towards better test
coverage: Merging unit tests for autonomous systems,” in NASA For-
mal Methods: 14th International Symposium, NFM 2022, Pasadena,
CA, USA, May 24–27, 2022, Proceedings, 2022, pp. 133–155.

[21] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar,
“Synthesis of reactive (1) designs,” Journal of Computer and System
Sciences, vol. 78, no. 3, pp. 911–938, 2012.

[22] M. Kloetzer and C. Belta, “Dealing with nondeterminism in symbolic
control,” in Hybrid Systems: Computation and Control: 11th Interna-
tional Workshop, HSCC 2008, St. Louis, MO, USA, April 22-24, 2008.
Proceedings 11. Springer, 2008, pp. 287–300.

[23] J. Tumova and D. V. Dimarogonas, “Synthesizing least-limiting guide-
lines for safety of semi-autonomous systems,” in 2016 IEEE 55th
Conference on Decision and Control (CDC). IEEE, 2016, pp. 5714–
5719.

[24] A. Badithela, J. B. Graebener, and R. M. Murray, “Minimally con-
strained testing for autonomy with temporal logic specifications,”
2022.

[25] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[26] J. R. Büchi, On a Decision Method in Restricted Second Order
Arithmetic. New York, NY: Springer New York, 1990, pp. 425–435.
[Online]. Available: https://doi.org/10.1007/978-1-4613-8928-6 23

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[28] V. V. Vazirani, Approximation algorithms. Springer, 2001, vol. 1.
[29] I. Tsaknakis, M. Hong, and S. Zhang, “Minimax problems with cou-

pled linear constraints: computational complexity, duality and solution
methods,” arXiv preprint arXiv:2110.11210, 2021.

[30] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray,
“Tulip: a software toolbox for receding horizon temporal logic plan-
ning,” in Proceedings of the 14th international conference on Hybrid
systems: computation and control, 2011, pp. 313–314.

[31] W. Ubellacker, N. Csomay-Shanklin, T. G. Molnar, and A. D. Ames,
“Verifying safe transitions between dynamic motion primitives on
legged robots,” in 2021 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 2021, pp. 8477–8484.

https://archive.darpa.mil/grandchallenge/rules.html
https://archive.darpa.mil/grandchallenge/rules.html
https://www.darpa.mil/about-us/timeline/darpa-urban-challenge
https://www.darpa.mil/about-us/timeline/darpa-urban-challenge
https://doi.org/10.1007/978-1-4613-8928-6_23

	Introduction
	Background
	Temporal Logic, Transition Systems, and Automata
	System and Test Environment

	Synthesizing Reactive Test Environments
	Problem Statement
	Running Example: Robot in a corridor
	Constructing Product Automata
	Multi-Commodity Flows and Bilevel Optimization
	Projecting the constraints onto the physical space

	Experimental Results
	Robot in a Corridor
	Hardware Experiments with Quadruped

	Conclusions and Future Work
	References

