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Abstract— In many autonomy applications, performance of
perception algorithms is important for effective planning and
control. In this paper, we introduce a framework for computing
the probability of satisfaction of formal system specifications
given a confusion matrix, a statistical average performance
measure for multi-class classification. We define the probability
of satisfaction of a linear temporal logic formula given a specific
initial state of the agent and true state of the environment. Then,
we present an algorithm to construct a Markov chain that
represents the system behavior under the composition of the
perception and control components such that the probability
of the temporal logic formula computed over the Markov
chain is consistent with the probability that the temporal logic
formula is satisfied by our system. We illustrate this approach
on a simple example of a car with pedestrian on the sidewalk
environment, and compute the probability of satisfaction of
safety requirements for varying parameters of the vehicle.
We also illustrate how satisfaction probability changes with
varied precision and recall derived from the confusion matrix.
Based on our results, we identify several opportunities for
future work in developing quantitative system-level analysis that
incorporates perception models.

I. INTRODUCTION

Autonomous systems usually consist of interconnected
components, including perception and control, as shown
in Figure 1. The perception module observes the environ-
ment, classifies objects and relevant features, and creates a
representation of the world around the vehicle. Using this
information, the control module computes a trajectory for the
vehicle to follow and the corresponding actuation commands
to keep the vehicle on the trajectory.

The perception and control modules are typically designed
under different principles. For example, the perception mod-
ule often relies on object classification that is based on
machine learning (ML) algorithms such as convolutional
neural networks to distinguish objects of different classes.
These ML-based algorithms are often evaluated based on
the performance measures such as accuracy, precision, and
recall [1], [2].

On the other hand, formal methods have been employed to
construct a provably correct controller given a system model
and temporal logic specifications [3], [4], [5], [6], [7]. The
correctness guarantee, typically specified using a temporal
logic formula, relies heavily on the assumption that the input
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Fig. 1: Architecture of an autonomous system

(i.e., the perceived world reported by perception) is perfect.
For example, if the perception component only reports the
most likely class of each object, the control component
assumes that the reported class is correct. Unfortunately, this
assumption may not hold in most real-world systems.

In recent years, verifying neural networks with respect to
safety and robustness properties has grown into an active
research area [8], [9], [10], [11]. Often, these methods
apply to specific neural net architectures, such as those
with piece-wise linear activation functions [8], or might
require knowledge of the safe set in the output space of the
neural network [9], [10]. Furthermore, these methods have
been demonstrated on learning-based controllers with smaller
input dimensions, and are not yet deployed for analysis of
perception models. One reason for this is the difficulty in
formally characterizing properties of ML-based perception
models, as elaborated below.

First, recent work demonstrates that it is not realistically
feasible to formally specify properties reflecting human-level
perception for perception models, in particular, classification
ML models, due to the high dimensional nature of the input,
such as pixels in an image [12]. Furthermore, Dreossi et al.
reason that not all misclassifications are the same; some are
more likely to result in system-level failure, and therefore, it
is necessary to adopt system-level specifications and contex-
tual semantics in developing a framework for quantitative
analysis and verification of perception models [12], [13].
This has led to work on compositional analysis of perception
models in finding system-level counter-examples [14].

While there is work on evaluating performance of per-
ception with temporal logic, those formal specifications are
defined over image data streams, and must be manually
formalized for each scenario / data stream [15], [16]. Often,
there is high variability in the performance of perception
models in seemingly similar environments, such as variations
in sun angle [17]. Thus, in a given scenario, manually con-
structed formal specifications might not exhaustively specify
all of the desired properties for perception. On the other
hand, it is simpler, and more accurate, to define system-level



specifications, such as “maintain a safe distance of 5 m from
obstacles” [18], [19], [20], [12].

In this paper, we exploit the confusion matrix, a well-
known performance measure in machine learning for classifi-
cation tasks, to make system-level verification more practical.
Moreover, various performance metrics such as accuracy,
precision, and recall, can be derived from the confusion
matrix, and perception algorithms are typically optimized to
improve along these measures of performance [2]. Confusion
matrices are used to characterize a model’s performance in
binary classification [21], multilabel classification [22], and
multiclass classification [23]. Yet, the connection between
these metrics and satisfaction of overall system specifications
is not well understood. Furthermore, the precision-recall
tradeoff is well-known in machine learning [1], that is,
increasing precision typically results in reducing recall and
vice-versa. To our knowledge, there is no systematic way of
picking the right operating point of these competing objec-
tives that accounts for system-level performance. The main
contributions of this work are two-fold. First, we formally
characterize the probability of satisfaction of a temporal logic
formula over a trace given classification errors in perception.
Second, we present an algorithm to construct a Markov chain
representing the state evolution of the system, taking into ac-
count both the perception and control components. We prove
that the satisfaction probability defined earlier is consistent
with the probability of the temporal logic formula computed
over the constructed Markov chain. We then employ existing
probabilistic model checkers to compute the probability that
the Markov chain satisfies the temporal logic formula. We
also present empirical results on how different classification
metrics affect the satisfaction probability of system-level
specifications.

This paper is outlined as follows. In Section II, we provide
a description of the class of autonomous systems considered
in our analysis, a running example of such a system and
the corresponding specifications, and provide formal defini-
tions for some performance measures of classification. In
Section III, we present the problem statement and define
the satisfaction probability. In Section IV, we present an
algorithm and a short proof describing how the confusion
matrix can be used to determine satisfaction probability. In
Section V, we present and discuss the main results of our
analysis. Finally, we present our conclusions and directions
for future work in Section VI.

II. PRELIMINARIES

A. System Description

We consider a system comprising of an autonomous agent
and its environment. Broadly, the autonomous agent is com-
posed of two modules — perception and control. Typically,
the main purpose of the perception module is object detec-
tion, which includes object localization and classification (a
more sophisticated perception component may include be-
havior prediction to better handle dynamic environments.) In
this paper, we focus our analysis on static environments, and
leave dynamic environments for future work. Furthermore,

the analysis focuses on the object classification inaccuracies.
In several autonomy applications, the perception modules
are neural network based. For the scope of this work, we
treat the perception module as a black box that observes the
true state xe of an object in the environment and returns a
classified label ye,t of that object as the observed state of the
environment at time step t to the control module.

The control module receives the environment observation
from the perception module to update the state st of the
agent. Broadly, the control module is responsible for high-
level (mission) planning, motion planning, and trajectory
tracking. In this work, we assume that the controller takes
the observed state ye,t of the environment returned by the
perception module as ground truth, and takes an action to
update the state of the agent accordingly. Additionally, we
focus on a discrete-state description of the system.

The state of the system is the comprises of the state st
of the autonomous agent and true state xe of the environ-
ment. It is possible to formally specify high-level system
requirements, and using this system description, we can ask
the following question: Can we use performance metrics for
classification-based perception to reason about the proba-
bility with which the high-level system specification will be
satisfied?

B. Example

Here we introduce a specific example corresponding to
the above system description that we will use throughout
the paper.

Example 1: Consider an autonomous car driving on a road
as the agent and a sidewalk environment. We assume a static
environment that comprises of the type of object on the
sidewalk. The true state of the environment xe can be one
of three types — a pedestrian denoted by ped, some other
object that is not a pedestrian, denoted by obj, and the case
where there is nothing on the sidewalk, denoted by empty.
As illustrated in Figure 2 , the location of the sidewalk is
fixed at step k, for some k far from the starting position
of the car to allow for realizable correct-by-construction
controllers for formal specifications that will be detailed
in Example 2. The car controller takes action to update
its state at each discrete time step based on the observed
state of the environment at that time step. The observed
state of the environment, ye,t, is the class label that the
perception module assigns to the object constituting the true
environment at time step t. We use the term system to mean
the car and sidewalk environment combined. We will use this
as a running example throughout the paper. Note that while
this example is discrete, we could extend this analysis to
examples with continuous dynamics by constructing discrete
abstractions [24].

C. System Specification

We specify formal requirements on the system in Linear
Temporal Logic (LTL). We introduce some preliminary no-
tation before describing LTL; a more formal background on
LTL can be found in [25]. The agent is defined by variables



Fig. 2: Illustration of the car and pedestrian example

VA, and the environment is defined by variables VE . The
set of states of the agent is represented by the valuation
of VA and is denoted by SA, and the set of states of the
environment is represented by the valuation of VE , denoted
by SE . The set of states by the overall system is represented
by S := SA × SE . Let AP denote the finite set of atomic
propositions over the variables VA and VE of the agent and
the environment.

An LTL formula is defined by (a) a set of atomic proposi-
tions, (b) logical operators such as: negation (¬), conjunction
(∧), disjunction (∨), and implication ( =⇒ ), and (c)
temporal operators such as: next (©), eventually (�), always
(�), and until (U). The syntax of LTL is defined inductively
as follows: (a) An atomic proposition p is an LTL formula,
and (b) if ϕ and ψ are LTL formulae, then ¬ϕ, ϕ ∨ ψ,
©ϕ, ϕU ψ are also LTL formulae. LTL formulae with other
temporal operators and combinations of logical connectives
can be derived from these operators.

For an infinite trace σ = s0s1 . . . ∈ 2AP , an LTL formula
ϕ defined over AP , we use σ |= ϕ to mean that σ satisfies
ϕ. For example, the formula ϕ = �p means that the atomic
proposition p ∈ AP is satisfied at every state in the trace,
i.e., σ |= ϕ if and only if p ∈ st,∀t.

Example 2: We revisit Example 1 to describe the discrete
state model of the car dynamics and its specifications. The
state of the car is characterized by its position and speed,
sa := (xc, vc) ∈ SA. The car position is defined by the
discrete cell it occupies, xc = Ci, where 1 ≤ i ≤ N and N
is the last cell index, and its forward speed, 0 ≤ vc ≤ Vmax.
The perception module on the car can observe the sidewalk
cell adjacent to Ck from any position on the road. The cell
Ck−1 is one road cell prior to the Ck, which adjoins the
sidewalk. The overall system specifications include the states
of the agent and the environment as,
(S1) If the true state of the environment does not have a

pedestrian, i.e, xe 6= ped, then the car must not stop at
Ck−1.

(S2) If xe = ped, the car must stop on Ck−1.
(S3) The agent should not stop at any cell Ci, for all i ∈

{1, . . . , k − 2}.

Specifications (S1) and (S2) require the agent to stop at Ck−1

only when there is a pedestrian on the sidewalk but not stop
otherwise. We formally express the safety specifications on

for the agent as follows.

ϕ1 = �((xe = ped) ∨ ¬(xc = Ck−1 ∧ vc = 0)) , (1)

ϕ2 = �(¬(xe = ped) ∨ ¬(xc = Ck−1 ∨ . . . ∨ xc = CN )

∨ (xc = Ck−1 ∧ vc = 0)) , (2)

ϕ3 = �(¬(

k−1∨
i=1

(xc = Ci ∧ vc = 0)). (3)

The specifications (S1), (S2), and (S3) correspond to formu-
lae ϕ1, ϕ2 and ϕ3, respectively.

D. Performance Measures for Classification in Perception

For multi-class classification, we assume that statistical
average performance is given in the form of a confusion
matrix defined below. Let dataset D be used to evaluate the
perception module for n-class classification with class labels
c1, . . . , cn. Let D1, . . . ,Dn ⊂ D be a class-based partition
of D such that all datapoints x ∈ Di are labeled as ci for all
1 ≤ i ≤ n. For any datapoint x ∈ D, we write P (x) = ci
to denote that the classifier predicts x to be of class ci, and
we write T (x) = ci to denote that the true class of x is ci.

Definition 1 (Confusion Matrix [1]): The confusion ma-
trix is a matrix C ∈ Bn×n such that for all i, j ∈ {1, . . . , n},

C(i, j) :=

∑
x∈Dj

1P (x)=ci

|Dj |
, (4)

where 1P (x)=ci is the indicator function. That is, for two
classes, ci and cj , C(i, j) represents the probability that a
datapoint is classified as ci, given that its true class label is cj .
For binary classification, with class labels c1 and c2, without
loss of generality, C(1, 1) represents the true positive rate,
C(2, 1) is the false negative rate, C(1, 2) is the false positive
rate, and C(2, 2) is the true negative rate. For example, true
positive rate for class c1 is the ratio of test inputs correctly
classified to be in class c1. Further details on the confusion
matrix can be found in [1]. Now, we give definitions of two
simple measures of performance that can be derived from the
confusion matrix. Without loss of generality, assume that ci
is the class label is of interest.

Definition 2 (Precision [1]): Given the confusion matrix
C for a multi-class classification, the precision corresponding
to class ci is:

P (i) =
C(i, i)

C(i, i) +
∑

j 6=i C(i,j)|Dj |∑
j 6=i |Dj |

, (5)

where
∑

j 6=i C(i,j)|Dj |∑
j 6=i |Dj | is the false positive rate for class ci,

and C(i, i) is the true positive rate for class label ci.
Definition 3 (Recall [1]): Given the confusion matrix C

for a multi-class classification, the recall corresponding to
class label ci is:

R(i) =
C(i, i)

C(i, i) +
∑
j 6=i C(j, i)

, (6)



where
∑
j 6=i C(j, i) is the false negative rate for class label

ci.
Maximizing precision typically corresponds to minimizing

false positives while maximizing recall corresponds to min-
imizing false negatives. However, there is an inherent trade-
off in minimizing both false positives and false negatives for
classification tasks [1], and often, a good operating point is
found in an ad-hoc manner. Typically, safety-critical systems
are designed for optimizing recall, but as we will show, this
is not always the best strategy to satisfy formal requirements.

III. PROBLEM STATEMENT

Here, we introduce and define the probability of satisfac-
tion of an LTL formula starting from an initial state, given
the true state of the environment.

Definition 4 (Transition Probability): Let s1 = (s1,a, xe),
s2 = (s2,a, xe) ∈ S be two states of the overall system,
xe be the true class label of the environment, and C be
the known confusion matrix associated with the agent’s per-
ception model. Let O(s1, s2) denote the set of environment
observations ye ∈ VE that result in the agent controller
transitioning from s1,a to s2,a. The transition probability
Pr : S × S → [0, 1] is defined as,

Pr(s1, s2) :=
∑

ye∈O(s1,s2)

C(ye, xe) . (7)

From the definition, and consequently structure, of the confu-
sion matrix 1, it is trivial to check that

∑
s2∈S Pr(s1, s2) =

1. Therefore, the transition probability between any two
states is always in the range [0, 1].

Definition 5 (Paths): Choose a state s0 = (sa,0, xe) ∈ S
for a fixed true environment state xe. A finite path starting
from s0 is a finite sequence of states σ(s0) = s0, s1, . . . , sn
for some n ≥ 0 such that the probability of transition
between consecutive states, Pr(si, si+1) > 0 for all 0 ≤
i < n such that si = (sa,i, xe) ∈ S. Similarly, an infinite
path σ = s0, s1, . . . is an infinite sequence of states such
that Pr(si, si+1) > 0 for all i ≥ 0. We denote the set of all
paths starting from s0 ∈ S by Paths(s0), and the set of all
finite paths starting from s0 ∈ S by Pathsfin(s0). For an
LTL formula ϕ on AP , Pathsϕ(s0) ⊂ Paths(s0) is the set
of paths σ = s0, s1, . . . such that σS |= ϕ.

A. Semantics for Probability of Satisfaction

Now, we define probability of satisfaction of a temporal
logic formula with respect to a formal specification based
on the following definitions derived from [25]. Let Ω =
Paths(s0) represents the set of all possible outcomes, that
is, the set of all paths of the agent, starting from state s0.
Let 2Ω denote the powerset of Ω. Then, (Ω, 2Ω) forms a σ-
algebra. For a path π̂ = s0, s1, . . . , sn∈ Pathsfin(s0), we
define a cylinder set as follows,

Cyl(π̂) = {π ∈ Paths(s0)|π̂ ∈ pref(π)}, (8)

where pref(π) = {π...j = s0, . . . , sj |j ≥ 0} is the set of
all finite prefix path fragments for π = s0, s1, . . ., an infinite
path. Let Cs0 = {Cyl(π̂)|π̂ ∈ Pathsfin(s0)}. The following

result can be found in [25], and can be derived from the
fundamental definition of a σ-algebra.

Lemma 1: The pair (Paths(s0), 2Cs0 ) forms a σ-algebra,
and is the smallest σ-algebra containing Cs0 .
The σ-algebra associated with s0 is (Paths(s0), 2Cs0 ). Then,
there exists a unique probability measure Ps0 such that

Ps0(Cyl(s0, . . . , sn)) =
∏

0≤i≤n

Pr(si, si+1). (9)

Definition 6: Consider an LTL formula ϕ over AP with
the overall system starting at state s0 = (sa,0, xe). Then,
the probability that the system will satisfy the specification
ϕ from the initial state s0 given the true state of the
environment is,

P(s0 |= ϕ) :=
∑

σ(s0)∈S(ϕ)

Ps0(Cyl(σ(s0))), (10)

where S(ϕ) := Pathsfin(s0)∩Pathsϕ(s0). Note that S(ϕ)
need not be a finite set, but has to be countable.

B. Problem Formulation

Problem 1: Given a confusion matrix C for multi-class
classification, a controller K, a temporal logic formula ϕ,
the initial state of the agent sa,0, and the true state of the
static environment xe, compute the probability P(s0 |= ϕ)
that ϕ will be satisfied for a system trace σ starting from
initial condition s0 = (sa,0, xe)?

Remark 1: If the probability distribution over the true
state of the environment is known, we can compute the
probability that the overall system satisfies the specification.

IV. APPROACH

Our approach to solving Problem 1 is based on construct-
ing a Markov chain that represents the state evolution of the
agent, taking into account the interaction of the perception
and the control components. This Markov chain is con-
structed for a particular true state of the environment. Given
a Markov chain for the state evolution of the system, it is
then straightforward to compute the probability of satisfying
a temporal logic formula on the Markov chain from an arbi-
trary initial state [25]. Probabilistic model checking can be
used to compute the probability that the Markov chain satis-
fies the formula using existing tools such as PRISM [26] and
Storm [27], which have been demonstrated to successfully
analyze systems modeled by Markov chains with billions of
states. In addition to the efficient off-the-shelf probabilistic
model checkers, our approach is computationally tractable
because constructing the Markov chain from the confusion
matrix is linear in the number of classes used for perception.

Definition 7 (Markov Chain [25]): A discrete-time
Markov chain is a tuple M = (S,P, ιinit, AP, L), where S
is a non-empty, countable set of states, P : S × S → [0, 1]
is the transition probability function such that for all states
s ∈ S, Σs′∈SP(s, s′) = 1, ιinit : S → [0, 1] is the initial
distribution such that Σs∈Sιinit(s) = 1, AP is a set of
atomic propositions, and L : S → 2AP is a labeling
function.



Algorithm 1 Constructing Markov Chain

1: procedure MC(S,K,O,C, xe)
2: M(s, s′) = 0, ∀s, s′ ∈ S . Initialize
3: for so ∈ S do . Looping through states
4: ιinit(s0) = 1 . Setting initial state probability
5: for ye ∈ O do . Possible observations of xe
6: sf ← K(so, ye) . Controller state update
7: p← C(ye, xe) . From confusion matrix
8: M(so, sf )←M(so, sf ) + p . Update
9: end for

10: end for
11: return M
12: end procedure

Remark 2: While Algorithm 1 constructs the overall sys-
tem Markov chain for a deterministic controller, this con-
struction can be easily extended to the case of a probabilistic
controller by modifying lines 6–8 in Algorithm 1 by includ-
ing the probabilistic transitions of the controller.

The σ-algebra of Markov chain M is (Paths(M, 2CM)),
where CM = {Cyl(π̂)|π̂ ∈ Pathsfin(M)} [25]. Let
SM(ϕ) denote all paths of the MC M in Pathsfin(M) ∩
Paths(M).

Definition 8 (Probability on a Markov Chain): Given an
LTL formula ϕ over AP , a true state of the environment,
xe, an initial system state, s0 = (sa,0, xe), and a Markov
chain M describing the dynamics of the overall system, we
denote the probability that the system will satisfy ϕ starting
from state s0 as PM(s0 |= ϕs). This probability can be
computed using standard techniques as described in [25].

Note that the construction of M depends on the true envi-
ronment state xe.

Proposition 1: Given ϕ as a temporal logic formula over
the agent and the environment states, true state of the envi-
ronment xe, agent initial state sa,0, and a Markov chain M
constructed via Algorithm 1, then P(s0 |= ϕ) is equivalent
to computing PM(s0 |= ϕ), where s0 = (sa,0, xe).

Proof: We begin by considering the transition prob-
abilities Pr and the transition probabilities on the Markov
chain P. Since misclassification errors are the only source
of non-determinism in the evolution of the agent state, by
construction, we have that P(si, sj) = Pr(si, sj) for some
si, sj ∈ S. Next, we compare the σ-algebra of Markov
chain M with the σ-algebra associated with state s0. By
construction of the Markov chain, observe that any path
p ∈ Paths(s0) is also a path on the MCM, p ∈ Paths(M),
and as a result Cs0 ⊂ CM. Similarly, by construction, there
is no finite trace on the Markov chain starting from s0,
σ(s0) ∈ SM that is not in S(ϕ).

P(s0 |= ϕ) =
∑

σ(s0)∈S(ϕ)

Ps0(Cyl(σ(s0)))

=
∑

σ(s0)∈S(ϕ)

∏
0≤i<n

Pr(σi, σi+1)

=
∑

σ(s0)∈S(ϕ)

∏
0≤i<n

P(σi, σi+1)

=
∑

σ(s0)∈SM(ϕ)

∏
0≤i<n

PM(Cyl(σ(s0)))

=PM(s0 |= ϕ)

V. EXAMPLE

A. Autonomous Agent Controller

We revisit the car-sidewalk running example introduced
in Example 1 with the corresponding specifications listed in
Example 2, and describe the controller for the car. In this
example, the observations of the environment are made at
each time step as follows. Given that the true environment
state is xe = ped, and at some time step t, if the perception
module incorrectly classifies the environment as obj, it passes
the observation ye,t = obj to the control module. The car
controller then takes an action at time step t based on the
correct-by-construction controller corresponding to obj.

Regardless of the true state of the environment, if the
perception module makes an observation that ye,t = obj,
then at time step t, the agent executes a controller to
uniformly decelerate at 1cell/timestep until it reaches a speed
of vc = 1. If the observed state of the environment is empty,
ye,t = empty, then at timestep t, the agent executes a
controller to uniformly accelerate at 1cell/timestep until it
reaches a speed of vc = Vmax. If the observed state of the
environment is a pedestrian, ye,t = ped, the agent executes a
correct-by-construction controller, built using TuLiP [20], for
the specifications ϕ1, ϕ2, and ϕ3. Note that our approach can
be applied to any controller. We use this specific controller
for illustration.

Further, the controller is designed taking into account
the following car dynamics. In the following equations, let
k(i, vc) := max{N, i + vc} for some 1 ≤ i < N , where N
is the length of the road. Then, the dynamics can be written
as

�((xc = Ci ∧ vc = 0)→©((xc = Ci)

∧ (vc = 0 ∨ vc = 1)) ,
(11)

�((xc = Ci ∧ vc = Vmax)→©(xc = Ck(i,Vmax) ∧
(vc = Vmax ∨ vc = Vmax − 1))) ,

(12)
�((xc = Ci ∧ vc = v)→©(xc = Ck(i,v) ∧ (vc = v ∨

vc = v − 1 ∨ vc = v + 1))) ,
(13)

where and 0 < v < Vmax and CN is the last road cell.



(a) True environment: ped (b) True environment: obj (c) True environment: empty

Fig. 3: (a) Satisfaction probability that the car stops at Ck−1 for xe = ped under various initial speeds and maximum speeds
Vmax such that 1 ≤ Vmax ≤ 10. (b) Satisfaction probability that the car does not stop at Ck−1 for xe = obj under various
initial speeds and maximum speeds Vmax such that 1 ≤ Vmax ≤ 10. (c) Satisfaction probability that the car does not stop
at Ck−1 for xe = empty under various initial speeds and maximum speeds Vmax such that 1 ≤ Vmax ≤ 10.

(a) True environment: ped (b) True environment: obj (c) True environment: empty

Fig. 4: (a) Satisfaction probability that the car stops at Ck−1 for xe = ped and Vmax = 5 under various initial speeds and
precision/recall pairs. (b) Satisfaction probability that the car does not stop at Ck−1 for xe = obj and Vmax = 5 under
various initial speeds and precision/recall pairs. (c) Satisfaction probability that the car does not stop at Ck−1 for xe = empty
and Vmax = 5 under various initial speeds and precision/recall pairs.

B. Results and Discussion

We now present satisfaction probability of system-level
specifications formalized in equations (1)– (3) under varying
initial conditions, confusion matrices, and true environment
states. Once the Markov chain has been constructed, we used
the model checker Storm to compute probabilities on the
Markov chain [27]. The implementation of Algorithm 1 and
the results presented in this section are available online [28].
All the results in this section correspond to the setting of
N = 65, and the sidewalk located adjacent to cell Ck, where
k := 57. The sidewalk position adjacent to cell C57 was
arbitrarily chosen such that the car has sufficient time to
come to a complete stop when the initial speed is 10.

1) Initial Conditions and True Environment State: For
confusion matrix CM 1 as shown in Table I, the satisfac-
tion probabilities are plotted for various true states of the
environment – ped, obj, and empty – in Figures 3a, 3b,
and 3c, respectively. In Figure 3a, the satisfaction probability
indicates the probability that the car will stop at Ck−1

since the true state of the environment contains a pedestrian.
Figures 3b and 3c show satisfaction probability for the car
not stopping at Ck−1 if the true state of the environment is
an obj or empty, respectively.

In Figure 3a, the general trend is that for higher maximum
speeds, the probability of satisfaction is lower; for Vmax = 1,
the probability of satisfaction is the highest since the agent
can bring itself to a stop in a single step according to its
dynamics. Observe that for a fixed Vmax, the probability of
satisfaction is monotonically decreasing in the initial speed
of the agent, which is reasonable because higher initial
speeds correspond to a lower probability of recovering from
perception errors due to dynamics of the car. The exception
to this is that for Vmax = 10 and an initial speed of 10, the
satisfaction probability is slightly higher than for an initial
speed of 9. This small increase in probability is due to the
location of the sidewalk (next to C57) in relation to the
initial speed of 10, which leads the car to a stop at the
earliest in 56 steps according to its dynamics described in
equations (11)–(13). Thus, unless the car speed is vc = 1, any
misclassifications of xe as ye = obj in the car’s trace actually
help the car in reducing its speed. Thus, the probability that
the car will stop is the probability that it observes either
ped or obj in the first 9 steps, and finally makes the correct
observation of ped in the last step, which is equivalent to
( 12

15 )9 10
15 ≈ 0.0895.

In Figures 3a, note that Vmax = 10 forms a lower bound



for satisfaction probability for varying initial speeds. For
instance, for initial speed of 1, the satisfaction probability is
the same for all Vmax ≥ 3. While this might seem unusual,
this observation can be explained as follows. If the initial
speed is low enough compared to the maximum speed, we
would need to observe ye = empty repeatedly to increase
the speed significantly due to the controller design in the car.
The probability that this perception error occurs in multiple
consecutive steps is small, and therefore, does not produce
a noticeable difference in satisfaction probability when the
initial speed is relatively small compared to a range of large
maximum speeds.

In Figures 3b and 3c, we observe that satisfaction prob-
ability monotonically increases with Vmax, with Vmax = 10
forming an upper bound on satisfaction probability. With a
higher Vmax, the car could potentially increase its speed
to higher speeds than with a lower Vmax, thus making it
harder to stop. For instance in Figure 3b, Vmax = 1 has
the lowest satisfaction probability since the car can bring
itself to a stop in one step with a single misclassification
of ye,t = ped; the probability that it will not stop at Ck−1

is if it makes observations of ye,t = obj or ye,t = empty,
which from the confusion matrix CM 1 have the probability
of 13

15 ≈ 0.8667. In Figure 3b, the slight dip in probability
from initial speed of 9 to 10 for Vmax = 10 can be
explained using the corresponding argument in Figure 3a
because controllers for ped and obj observations work to
lower the speed of the car. In contrast, in Figure 3c, there is
no such dip in probability because the correct observation of
ye,t = empty works to keep the car speed higher to Vmax,
and while misclassifications lead to lower the speeds, they
have a small probability of occuring in several consecutive
steps. Moreover, since the controller for empty works to
increase the speed to Vmax, and the controller for obj works
to decrease the speed until vc = 1, the probability that the
car will not stop is higher in Figure 3c than in Figure 3b.

2) Precision/Recall Tradeoff: Often in autonomous driv-
ing applications, maximizing recall is prioritized over pre-
cision for safety purposes. In our example, maximizing
recall would correspond with increasing tendency to stop
at Ck−1, even if xe 6= ped. In Figure 4, we show how
varying precision/recall affects the probability of satisfaction
for Vmax = 5. These precision/recall pairs were chosen
to reflect the general precision/recall tradeoff trends for
classification tasks [1]. For the results presented in this paper,
we construct a confusion matrix as a function of precision
(p) and recall (r) as shown in CM(p, r) of Table I. Note that
these precision/recall pairs are in reference to the class label
ped. In Table I, TP , FP , TN , FN are the number of true

TABLE I: Confusion Matrices used in simulation

Predicted True (CM 1) True (CM(p,r))

ped obj empty ped obj empty

ped 10/15 2/15 3/15 TP FP/2 FP/2
obj 2/15 11/15 2/15 FN/2 4TN/10 TN/10
empty 3/15 2/15 10/15 FN/2 TN/10 4TN/10

positives, false positives, true negatives, and false negatives,
respectively, of the ped class label. These are derived from
precision p and recall r as follows,

TP = r , FP = TP (
1

p
− 1) ,

TN = 2− FP , FN = 1− TP .
(14)

Note that this is one of many possible confusion matrices that
could be constructed; we have chosen one of them for illus-
tration, and we use it consistently across all precision/recall
pairs.

Figure 4a shows the probability that the car will stop at
Ck−1 given that xe = ped for varied precision/recall. We
observe that for higher precision and lower recall, satisfaction
probability is lower compared to that of lower precision and
higher recall. For a fixed precision/recall setting, the satis-
faction probability is monotonically decreasing with initial
speed. This indicates that it is easier for the car to recover
from misclassification errors for lower initial speeds, and can
be reasonably explained by the car dynamics since the car
can only increase or decrease its speed by 1 unit at every
step. At lower initial speeds, the car needs to make several
misclassification errors consecutively to continue increasing
its speed, which has a low probability over the length of
the trace. In contrast, at higher speeds, the car moves a
greater distance in one time step, and therefore has fewer
opportunities for recovering from misclassification errors.

Figures 4b and 4c shows satisfaction probability when
xe = obj and xe = empty, respectively, under for different
precision/recall pairs. This satisfaction probability indicates
the probability that the car will not stop at Ck−1. We observe
that for lower recall and higher precision, the probability that
the car will not stop is higher, and vice-versa for higher recall
and lower precision. This corresponds to our intuition that
for higher recall, and consequently lower precision, the car
is more likely to stop even when there is no pedestrian. The
satisfaction probability increases monotonically with initial
speed. First, due to its dynamics, when the car of has a lower
initial speed, it makes more observations at slower speeds
before reaching Ck−1 compared to when starting at higher
initial speeds. Secondly, if a car starting at lower initial
speed has to progressively to a higher speed vc, it needs
to make several consecutive observations of ye = empty,
which has a low probability as reasoned above. For these
two reasons, with lower initial speeds, the car can make
more misclassifications due to more observations, and the
car tends to continue at a lower speed over its trace. Thus,
because it takes fewer steps to bring the car to a stop if it is
traveling with a low speed vc, it is easier to bring the car to
a stop at Ck−1.

Although both Figures 4b and 4c represent the satisfaction
probability that the car will not stop, Figure 4c shows that the
satisfaction probability is higher when the true environment
is empty compared to Figure 4b, where the true environment
is obj. This difference can be explained by the controllers
for the obj and empty environments. If xe = obj, the car
controller slows down the car by 1 unit unless vc = 1, and



for xe = empty, the car controller speeds up the car by 1
unit unless vc = Vmax. As reasoned above, at lower speeds,
it is easier for the car to stop with a few misclassifications
of the environment as ped, thus leading to lower satisfaction
probability in the case of xe = obj.

VI. CONCLUSION

In this work, we present preliminary results towards es-
tablishing synergy between performance metrics popular in
classification and formal system requirements in autonomy.
Specifically, we first define the probability of satisfaction of a
temporal logic formula, and then present a simple algorithm
that computes the satisfaction probability from a confusion
matrix for classification tasks. In addition to observing that
mis-classifications could lead to agent traces that violate the
overall system requirements, we can also compute non-trivial
probabilities of satisfaction of overall system requirements.
Furthermore, we observe that due to the precision/recall
tradeoff in classification algorithms, it is infeasible to satisfy
all system requirements by maximizing either one of those
perception performance measures.

This preliminary analysis opens several questions for
future work, some of which include — using formal re-
quirements to characterize a class of confusion matrices that
would be optimal for maximizing the satisfaction probability
of those requirements, and optimizing for precision and recall
in a manner that is consistent with formal system require-
ments. Further research is required to study performance
metrics of perception tasks such as behavior prediction, such
as in scenarios with dynamic and reactive environments, in
the context of formal system requirements.
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